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overall size of the matrix lattice. This is independent 
of the size or number of precipitates, as well as of the 
severity of the field that surrounds them. 

(iii) Scattering coherency from precipitates can 
influence the intensity from the matrix when the 
structures of the precipitate and matrix are similar 
enough to introduce overlapping amplitudes of scat- 
tering. 

(iv) In the mixed-partitioned state only two matrix 
peaks may be apparent. One appears sharp and the 
second is broad. The sharp peak is a mixture of the 
Bragg and SD peaks, which tend to be located very 
near each other, while the broad peak is a quasiline. 
Consequently, matrix scattering may appear as a 
doublet. 

(v) Precipitate scattering includes direct scattering 
from precipitates and voids as well as a cross term. 
The cross term may become negligible when no 
overlap occurs between the precipitate and void 
amplitude functions. In most cases, the shape of the 
precipitate scattering is primarily influenced by the 
size and shape of the precipitates. Displacement 
fields from other precipitates can interact and pro- 
duce additional broadening. Partitioning in the case 
of precipitate scattering is not likely to be evident, 
although a peak shift and asymmetry resulting from 
strain may exist. 
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effects of severely distorted lattices, as well as notes 
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made possible with the support of NSF Grant 
DMR-881 8013. 

References 

BARABASH, R. I. & KRIVOGLAZ, M. A. (1978). Fiz. Met. Metal- 
loved. 45, 7-18. 

BARABASH, R. I. & KRIVOGLAZ, M. A. (1981). Fiz. Met. Metal- 
loved. 51,903-916. 

CULUTY, B. D. (1978). Elements of X-ray Diffraction. Reading, 
MA: Addison-Wesley. 

DEDERaCHS, P. H. (1970). Phys. Rev. B, 1, 1306-1317. 
DEDERICHS, P. H. (1971). Phys. Rev. B, 4, 1041-1050. 
DOBROMVSLOV, A. V. (1976). Phys. Met. Metallogr. 42, 91. 
DOBROMYSLOV, A. V. (1980). Phys. Met. Metallogr. 50, 118. 
GANZrrUILA, N. N., KOZLOVA, L. YE. & KOKORIN, V. V. (1981). 

Phys. Met. Metallogr. 52, 106-111. 
HOLY, V. (1984). Acta Cryst. A40, 675-679. 
hDA, S., LAP, SON, B. C. & TISCHLER, J. Z. (1988). J. Mater. Res. 3, 

267-273. 
KRIVOGLAZ, M. A. (1959). Fiz. Met. Metalloved. 7, 650. 
KRIVOGLAZ, M. A. (1960). Fiz. Met. Metalloved. 9, 641. 
KRIVOGLAZ, M. A. (1961). Fiz. Met. Metalloved. 10, 169, 465. 
KRIVOGLAZ, M. A. & HAO, T'Yu (1969). Fiz. Met. Metalloved. 27, 

3-15. 
LARSON, B. C., hDA, S., TISCHLER, J. Z., LEWIS, J. D., ICE, G. E. & 

HABENSCHUSS, A. (1987). Mater. Res. Soc. Syrup. Proc. 82, 
73-78. 

LAP, SON, B. C. & SCHMATZ, W. (1974). Phys. Rev. B, 10, 2307- 
2314. 

Moss, S., SPARKS, C. & ICE, G. (1992a). Phys. Rev. B, 45, 
2662-2676. 

Moss, S., SPARKS, C. & ICE, G. (1992b). Phys. Rev. Lett. 68, 
863-866. 

SCHWARTZ, L. H. & COHEN, J. B. (1987). Diffraction from 
Materials. New York: Springer-Verlag. 

TRINKHAUS, H. (1971). Z. Angew. Phys. 31,229. 
WARREN, B. E. (1969). X-ray Diffraction. Reading, MA: Addison- 

Wesley. 

Acta Cryst. (1993). A49, 781-789 

Modelling Electrostatic Potential from Experimentally Determined Charge Densities. 
I. Spherical-Atom Approximation 

BY NOUR-EDDINE GHERMANI, NOUZHA BOUHMAIDA AND CLAUDE LECOMTE* 

Laboratoire de Mindralogie-Cristallographie et Physique Infrarouge-URA CNRS 809, 
Universit~ de Nancy I, Facultd des Sciences, BP 239, 54506 Vandoeuvre-lds-Nancy CEDEX, France 

(Received 25 November 1992; accepted 14 May 1993) 

Abstract 
Observations of the experimental electrostatic 
potential obtained from X - X  spherical electron 
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density can be used to derive point charges centred 
on the atoms. This is applied to a pseudopeptide, 
N-acetyl-a,fl-dehydrophenylalanine methylamide. 
The experimentally determined charges are consist- 
ent whatever the sampling points and 'follow' the 
atomic site when the conformation of the molecule 
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782 MODELLING ELECTROSTATIC POTENTIAL FORM 

changes. However, introduction of multipolar 
moments is necessary as soon as the aspherical part 
of the electron density is added. 

Introduction 

Molecular recognition is one of the key principles of 
computer methods for drug design. The interaction 
between drug and receptor is principally dependent 
on two factors. First, the drug must fit sterically into 
the active site of the receptor like a key in a lock. 
Second, for this lock-key interaction to be possible, 
site and drug must be electrostatically comple- 
mentary. 

When ligand A and B (receptor) are separated by 
more than two van der Waals' radii, they are at the 
molecular recognition stage and the electrostatic part 
gelec t of the interaction energy is predominant: 

E~lect = f V~(r)pA(r)d3r, (1) 

where VB is the electrostatic potential created by the 
receptor and pA is the electronic density of the ligand 
A. This electrostatic energy must then be calculated 
with care and any change in V,(r) may modify the 
recognition process. Usually, the receptor is not well 
known and the drug molecule is often complex 
enough to prevent an ab initio calculation. The 
potential energy generally used in the molecular 
modelling is 

Vtot"  Vconf + ~'~.E [(Aij/rl2)-(Bij/r6)]+ Z~.  q~qJero, 
i < j  i < j  

(2) 
where Vco,f is the conformational potential depen- 
dent on dihedral angles, torsion and stretching 
parameters, AO" and B/j (the Lennard-Jones param- 
eters) are the repulsion and attraction coefficients, 
respectively, q~ is the atomic partial charge on atom i 
and e is the effective dielectric constant. If all the 
mechanical and Lennard-Jones parameters are 
known from theory or experiment (Rasmussen, 
1984), the partial charges remain inaccurate and 
depend strictly on the empirical calculations used 
and on other methods like those of Mulliken (1955), 
Bader (1990) or Hirshfeld (1977), which by partition- 
ing determine the limits of each atom of the molecule 
and integrate the charge in this atomic volume. 

In our studies of X - X  electron density in peptides 
and related compounds (Souhassou et al., 1991, 
1992; Lecomte, Ghermani, Pichon-Pesme & Sou- 
hassou, 1992; Pichon-Pesme, Lecomte, Wiest & 
Brnard, 1992) we now have a set of electron-density 
parameters calculated and refined for several differ- 
ent peptide molecules using (Hansen & Coppens, 
1978) 

p(r) = p~(r) + PvalK'3pval(K'r) 

+ ~'.K"3Rnt(K"r)~PtmYim(O,q~). (3) 
1 m 

X' and r "  are expansion-contraction coefficients and 
the third term of (3) accounts for the nonspherical 
deformation density. When no aspherical term is 
included in the density model, the refinement is 
known as ' r  refinement' (Coppens et al., 1979) and is 
supposed to give the radial expansion and the charge 
of the atoms (Q = z -  Pval). Such a set of experimen- 
tal charges was compared to theory for the DNA 
constituents (Pearlman & Kim, 1990). Furthermore, 
from the analytical expression for p(r) [(3)], we are 
able to calculate the electrostatic potential at any 
point outside the molecule (Ghermani, Lecomte & 
Bouhmaida, 1993): 

V(r) = Vcore(r ) "1- Vval(r) + A V(r) (4) 

with 

Vcore(r) = ( Z / l r -  RI)- f[pc(r')d3r'/I r - R - r'l] 
o 

o o  

Vval(r) -" -- f[evalK'3pval(K 'r')d3r'/I r - R - r'[] 
o 

and 

AV(r) = -4r rZ[K"  Ptm/(2l + 1)][(1/K ''t+ l r - R t+ l) 
lm 

""l'- RI 
× f t '+2R. t ( t )d t+K' ' ' l r -  RI' 

0 

× f (1/tt-')R,t(t)dt]Ytm(O',~b'). 
~"lr-nl 

Z is the charge of the nucleus, p~ and pva~ are the 
core and valence electron densities of the free atom, 
respectively, and are calculated from the Clementi 
wave functions, 0' and 4,' are the angular coordi- 
nates of the vector (r - R) (see Fig. 1). This potential 
will be referred to later as the experimental potential 
and can, in principle, be fitted by a set of point 
charges and multipole moments, if necessary, at the 
nuclear positions. As we have shown, the Ptm 
electron-density parameters [(3)] are transferable 
from a group of atoms in a molecule to the same 
group in another molecule (Pichon-Pesme, Lecomte 
& Lachekar, 1993), which means that our potential- 
fitted charges may be transferable and useful in 

r' " .M 

0 
Fig. 1. Calculation of the electrostatic potential. 



N. G H E R M A N I ,  N. B O U H M A I D A  A N D  C. LECOMTE 783 

molecular-recognition processes or molecular model- 
ling if we check that they are not conformation 
dependent. 

This paper is divided into three parts. The first 
part describes the method used to obtain the 
potential-fitted charges. In the second part, the 
method is applied to the potential derived from the 
spherical part of the electron density (Pt,,, = 0) of the 
N-acetyl-a,fl-dehydrophenylalanine methylamide 
molecule (hereafter referred to as AcA) (Souhassou 
et al., 1992) (Fig. 2). The last part of the paper is 
devoted to the effect of the conformation of the 
molecule on the potential-fitted charges. The second 
paper of the series will discuss charges and multipole 
moments fitted to an electrostatic potential calcu- 
lated from a multipolar refinement. 

Calculation of the potential-derived charges 

Use of the Householder triangularization method 

The electrostatic potential of a given molecule can 
be calculated at any point outside the molecule from 
(4) as soon as a set of electron density parameters 
has been obtained for each atom of the molecule. 

Let Vobs(X,y,z ) be the experimental potential of M 
given points (xi, yi, z~) carefully sampled in the space. 
The problem is to get a set of N charges qj centred on 
the atoms and satisfying the minimum of the 
function 

M 
,a = El Zob, (k ) -  Y.(qi/Rik)l 2. 

k i 

This fit is possible, as shown in Fig. 3, which displays 
the electrostatic potentials of a positive and a 
negative oxygen atom calculated from Clementi wave 
functions. It can be noted that, at a distance greater 
than 2 A, the potential curves may be very well fitted 
by a hyperbola +_ q/R. The situation is slightly more 

C ~  "7 H(N1)  / ~ H  phenyl 

O t  - - - - ~ C ' t  _ . 

• CHI~//~ H(N=) 

Fig. 2. O R T E P  view of the molecule in the crystal conformation 
(~Oo = - 56.81, ~o = ]48 .71 ,  X2o = - 39 . ]3 ° ) .  

complicated for nonspherical atoms, where addition 
of multipole moments is necessary. 

The solution is generally given by the conventional 
least-squares method, where the resolution is carried 
out algebraically using the normal matrix A = 
[a2A/aqiOqj]. The problem here is linear with respect 
to qt; A becomes A = [Y.~ 1/Ri~Rjk, where Rig(Rib) is 
the distance from the observation point k to atom i 
0). The matrix A is of dimension N and must be 
inverted. The determinant of A falls off very quickly 
with the increase in the number of atoms because it 
is a product of 1/Rik terms. In the Householder 
triangularization method (Lascaux & Theodor, 
1986), we solve the system of M linear equations [B] 
[qi] = [ Vobs], where B is an M x N matrix; B is not 
inverted but is transformed to a N-dimensional trian- 
gular matrix. This method is more flexible and the 
results are more stable, whatever the values of M and 
N. It has been implemented as a subroutine in the 
potential-calculation program ELECTROS, which is 
available from the authors (Ghermani, Bouhmaida & 
Lecomte, 1992). In none of the calculations has an 
electroneutrality constraint been applied. 

The observation sampling 

As shown earlier, the observed electrostatic 
potential can be calculated at any point of the space 
around a given molecule because it is calculated 

V(eA-') 
1.00- 

0.831 

0.671 

0.5(~ 

0.331 

0.171 

i 
t 

i 

0.00 . . . . . . . . . . . . . . . . . . . .  
0.00 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 

R (A) 
( . )  

V(eA-') 
0.50• 

0.33- 

0.17• 

0.00 

-0.17 

- 0.33" 
- 0.50. 

0.00 0.80 1.50 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 
R (A) 

(b)  

Fig. 3. Radia l  electrostatic po ten t ia l s 'o f  (a) a positive (q+ = 0.44 e) 
and  (b) a negative (q-  = - 0 . 4 4  e) O a t o m  and  their q/R fits 
(dashed lines). 
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analytically from the density parameters. In fact, the 
electrostatic interaction for molecular recognition 
occurs outside the molecule; the observation must be 
made on the van der Waals surface and further out 
of the molecule. For the observation points, spheri- 
cal contours were built around each atom instead of 
a cubic grid; this has the advantage of taking into 
account the conformation and then the eventual 
folding of the molecule (see Fig. 4). The spherical 
grid also conforms better to the _ q/R function. We 
also used one or several shells around each atom 
from 2 to 8 A. Furthermore, the observation points 
on one given sphere are equidistant: their coordi- 
nates 0 and ~o with respect to the same orthogonal 
axis centred at each atom are related by 

/t~o = In{tan[(0 +/tO)12]tan(O/2)}, 

where/tO = 15 or 30 ° in our calculations; we found 
smaller steps unnecessary to fit the spherical 
potential. An observation point k was rejected if it 
was at a distance R;k smaller than the radius of the 
first shell. 

After the fit, a residual factor R(V) is calculated as 
M M 

[k ~ -- V 2 V2 ] 1/2 R( O = I Vo~>,, ~al~,<l / Z obs,,J • 
=1 k = l  

Application to N-acetyl-a,fl-dehydrophenylalanine 
methylamide, AcA 

Nondependence of the charges from the sampling 
points for the crystal-fixed conformation when V(r) is 
calculated from a spherical refinement 

The method was applied to N-acetyl- 
a,/3-dehydrophenylalanine methylamide (Fig. 2). 
This is a pseudopeptide molecule with one double 
bond between C" and C ~. Therefore, as shown by 
Souhassou et al. (1992), the two peptide bonds are 
nonequivalent and we do not expect the same 
charges on the C, N and O atoms of the two peptide 
links. Table 1 gives the net charges averaged on 
chemically equivalent atoms obtained from different 

, ' / 1 1  \\\', 
g i l l  c .o I I 1 ~  

, , \ \ ~  - i i 1 :  

" \  /# 

Fig. 4. Sampling-point shells for a peptide link. 

samplings of points. These values can be compared 
with the net charges q obtained after the spherical 
refinement (q = Z -  Pva0 and used to generate the 
electrostatic potential. Each line of Table 1 gives the 
minimum radius Rmin, the /tO increment, the calcu- 
lated charges, the number of observations, the resid- 
ual R factor and the total charge of the molecule. 
The last two lines correspond to a calculation that 
includes 7 and 13 shells (Rmi n = 2 A) from 2 to 8 A in 
steps of 1 and of 0.5 A, respectively. The fit is 
excellent whatever the sampling used, as shown by 
the R values, which range from almost 0 to 1% for 
12 000 points. 

The values obtained for the different types of 
atoms are consistent; in more detail, the charges 
obtained from a minimum radius of 2 A are different 
by several per cent: this is because V(r) varies faster 
than q/R at short distances (Fig. 3). 

To take into account the steric interactions and the 
nature of the atoms, another calculation was per- 
formed with a minimum radius equal to a multiple 
of the van der Waals radii of each atom (rc = 1.7, 
ro = 1.52, rN = 1.55, rH = 1.2 A); all the results are 
given in the supplementary material.* The charges 
obtained are, as expected, equal to those of Table 1, 
to within less than 10-2 e, and the R factors are less 
than 10 -3. To show the excellence of this fit, Fig. 5 
compares the observed electrostatic potential on a 
peptide plane (a) with the potential calculated from 

N 

gi(r) = ~ q+lro1-1 (5) 
j = l  

(Fig. 5b), where the q/are the fitted charges against 
the potential at a sample of points chosen at two van 
der Waals radii. Fig. 5(c) gives the difference 
between the two maps. As soon as we look at a 
distance of more than 2 A, the two calculations lead 
to almost exactly the same potential. On the other 
hand, the fitted charges from the experimental 
potential are not very different from the charges 
obtained from the Pval parameters. This is the 
expected result of a spherical refinement according to 
the Gauss theorem because almost all of the charge 
on the atoms is inside the volume in which the 
sampling points are chosen. As shown in Fig. 5(d), 
the potential calculated from point charges equal to 
q = ( Z -  Pval) differs significantly from the observed 
one (Fig. 5a). 

* Tables of fitted charges derived from sampling points based 
on van der Waals' radii for AcA in the crystal conformation, 
experimental and fitted electrostatic potentials of a peptide link in 
conformation III and experimental and fitted potentials in the 
plane perpendicular to the phenyl ring of AcA in conformation IV 
(contours -0.01 e A -~) have been deposited with the British 
Library Document Supply Centre as Supplementary Publication 
No. SUP 71132 (7 pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CH1 2HU, England. 
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Table 1. Non-dependence of the charges on the sampling points for AcA in the crystal conformation 

Net charge* 
K 

R ...... (A) /tO(°) 

C~ Oo C~ O, N, H(N,) N~ H(N:) C ~ Cph..y, Hpheny, 

0.132 --0.370 --0.097 --0.440 -0.306 +0.246 --0.083 0.237 --0.098 --0.I01 +0.156 
1.020 0.974 0.999 0.977 0.989 1 . 0 9 3  1 .001  1 . 0 9 0  1 .001  0.997 1.154 

2 30 0.184 
4 30 0.171 
6 30 0.171 
6 15 0.171 
8 15 0.171 

2-8 30 0.187 
2-8 30 0.189 

-0.439 -0.080 -0.499 -0.335 0.221 -0.099 0.224 -0.060 -0.080 0.134 
-0.422 -0.099 -0.487 -0.327 0.246 -0.079 0.235 -0.093 -0.106 0.156 
-0.422 -0.099 -0.486 -0.326 0.246 -0.079 0.237 -0.095 -0.106 0.156 
-0.422 -0.099 -0.487 -0.327 0.246 -0.079 0.237 -0.094 -0.107 0.156 
-0.422 -0.098 -0.487 -0.326 0.246 -0.079 0.237 -0.096 -0.106 0.156 
-0.439 -0.096 -0.499 -0.311 0.215 -0.077 -0.222 -0.054 -0.097 0.143 
-0.438 -0.108 -0.495 -0.315 0.218 -0.070 0.221 -0.049 -0.095 0.144 

* Start ing values to generate the electrostatic potential .  
R calculated on 11 966 points.  

CH~ 

0.113 

No~, R (%) Z~ 

0.083 275 0.008 - 0.180 
0.064 128 0.000 -0.189 
0.063 94 0.000 -0.189 
0.064 432 0.000 -0.189 
0.065 361 0.000 -0.189 
0.074 5755 0.011~ - 0.188 
0.072 11966 0.0109 -0.188 

IA IA 

\ 

~ ;  ~:: .__ "'" 

:,, ,,~,..'... .... .. ".. 

// ~ ~ s  
~, , . , , , ,  , ,, ; 

~ i ~  i i i 

i l l  i i I i ~ , ' , , ,  ; 
~ r /  , /  / I  / I / 

i i  I / I / , I  

. 

g I " . .  

(a) 

1A 
i I 

...... " - - . .  

4 , /  " , J "  ............ 
(b) 

I A  
i I 

\ @ 

, . H ~  .,/! 
(c) 

i ~. ~ ~ i I 
1 1 11 i 

11 i i i i 

, ' ,  ,, / , , 
• s / ~ /  " / i i 

- _  ~ . - : . - . - ' . -  . .  . ,  , 

x g ; ', 
(a~ 

Fig. 5. Electrostat ic potential  maps o f  a peptide link o f  AcA: (a) observed potent ial  Vob, f rom (4); (b) calculated potent ial  Vca~ f rom (5); 
(c) Vob,-- V=,; (d) potential  calculated with (5) and q = Z - PvaJ. Con tour s  are 0.05 e A -  ~ (1 e A -  ~ = 332.1 kcal m o l -  1). Zero  and 
negative contours  are dashed. 
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As pointed out before, no electroneutrality con- 
straint was used in the calculations. The sum of the 
fitted charges over the molecule is about -0 .19  e 
against - 0 . 0 2  e for the experimental net charges. If 
we distribute the - 0 . 1 9  e to all the atoms of the 
molecule taking into account the electronic weight of 
each of them, we get new charges that are statis- 
tically equal, within 10 -2 e, to the previous ones. It 
confirms that a neutrality constraint is not necessary 
because the error on the model electron density is 
0.05 e /~-3  (Souhassou et al., 1992). 

Fitted charges for other conformations of the molecule 
from spherical refinement 

This set of charges was calculated for the crystal 
conformation. It is necessary to check that the set 
obtained is stable when the molecular conformation 

changes. As the electron density of the molecule does 
not change significantly with conformation (Pichon- 
Pesme, Lecomte & Lachekar, 1993), we kept the Pva~ 
and K values to calculate new potentials for several 
molecule conformations, changing the ~o(C~'-N), 
¢t(C"-C'), x2(C ° - C  r) and ~o + ~0 torsion angles. 
We checked that each of these chosen conformations 
was sterically possible (E1-Masdouri, 1989). The four 
ORTEP views are given in Fig. 6 with their associ- 
ated ~0, ~ and X 2 angles. The calculated potential 
does not change in the close vicinity of the atoms but 
the contour curves are different in the intermolecular 
region, as shown, for example, in Figs. 7(a) and (b), 
which represent the electrostatic potential on the 
same peptide plane as that of Fig. 5 (N2C1102) for 
conformations I and II and their fitted potential 
(Figs. 5c and d). The fit of the qi to the observed 
potential is excellent (Table 2). Furthermore, the 

(a) 

(c) 

~v 

(b) 

. - . . - - _ . . _ .  

(d) 

Fig. 6. ORTEP views o f  the chosen  confo rma t ions :  (a) c o n f o r m a t i o n  I, ~o = - 8 8 . 8 ,  qt = 89.30, X 2 = - 3 9 . 1 3 ° ;  (b) c o n f o r m a t i o n  II, q~ = 
- 5 6 . 8 1 ,  ~O = 120.71, X 2 =  - 3 9 . 1 3 ° ;  (e) c o n f o r m a t i o n  III ,  ~o = - 7 6 . 8 1 ,  ~0 = 148.71, X 2 =  -39 .13° ;  (d) c o n f o r m a t i o n  IV, ~o = - 5 6 . 8 1 ,  

= 148.71, ,/'2 = - 2 2 . 1 3  °. 



R_~ (A) ~o (o) 
Conformation I 

3.5 30 
8.5 30 

Conformation II 
3.5 30 
8.5 30 

Conformation III 
3.5 30 
8.5 30 

Conformation IV 
3.5 30 
8.5 30 

N. G H E R M A N I ,  N.  B O U H M A I D A  AND C. L E C O M T E  

Table  2. Nondependence of the charges on the molecular conformation 

C'o Oo C', O, N, H(N,) N~ H(N~) C= C~,,,y, Hp,,,y, CH3 Nob, R (%) 

0.175 -0 .423 -0 .102 -0 .487 -0 .332  0.247 -0 .075 0.235 -0 .082 -0 .109 0.157 0.063 337 0.0005 
0.174 -0 .423 -0.101 -0 .487 -0.331 0.247 -0 .077  0.236 -0 .085 -0 .108 0.156 0.064 4684 0.0003 

0.176 -0 .424  -0 .103 -0 .486  -0 .330 0.246 -0 .077 0.237 -0 .085 -0 .107  0.155 0.063 353 0.0008 
0.174 -0 .423 - 0 .  I01 -0 .486 -0 .326  0.245 -0 .077  0.237 -0.091 -0 .107  0.156 0.067 4765 0.0005 

0.176 -0 .424  -0 .100  -0 .487  -0 .328 0.246 -0 .077 0.237 -0.091 -0 .107 0.155 0.062 340 0.0006 
0.173 -0 .423 -0 .099 -0 .487  -0 .324  0.245 -0 .077 0.237 -0 .094  -0 .106  0.156 0.063 4750 0.0004 

0.177 -0 .424  -0 .099 -0 .488 -0 .330 0.247 -0 .077 0.237 -0 .090  -0 .106  0.155 0.062 328 0.0006 
0.175 -0 .424  -0 .098 -0 .487 -0 .328 0.246 -0 .078 0.237 -0 .094  -0 .107 0.156 0.063 4749 0.0004 
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Fig. 7. Electrostatic  potent ia l  maps  o f  a peptide link o f  AcA for c o n f o r m a t i o n s  I and II: (a) and (b) observed potential;  (c) and (d) fitted 
potential .  Same  contours  as in Fig.5. 
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fitted charges are close to those obtained for the 
crystal-fixed conformation; the differences do not 
exceed 0.05 e. The fitted charges are then indepen- 
dent of the molecular conformation when the spheri- 
cal refinement parameters are used to calculate the 
observed potential. 

Concluding r e m a r k s  

It is possible to obtain reliable point charges on 
atoms by fitting the electrostatic potential of the 
molecule when this property is calculated from the 
spherical part of the electron density or from a x 

1A 
I i 

\ 
\ 

"~_,, 

It [ " x  

t \ \ \ \  

\ 
\ 

\ 
\ 

\ 
\ 

(a) 

1A 
i i 

\ 
\ 

%. 

. "-_ _--..~ 

/ t t f i l l ' '  

, - .  . . . . .  ," / 

- .  . . . .  . ~  N 
\ 

\ 

\ 
\ 

\ 

(b) 

Fig. 8. Electrostatic potential maps of a water-molecule solvate in 
Leu-enkephalin calculated from a multipole electron-density 
model and fitted by (a) the point-charges model and (b) the 
point charges and dipole and quadrupole moments. 

refinement. The partial charges found are consistent 
and are independent of both the choice of the sample 
points, when their minimum distance from the atom 
is greater than 2 A, and the molecular conformation. 
This makes possible the transferability of these 
important quantities to other molecules. 

The next problem is the assignment of charges 
when the potential calculation includes the aspherical 
part. As a first test of the method, we took the 
multipole parameters of the water molecule in the 
crystal of Leu-enkephalin.3H20 (Pichon-Pesme, 
Lecomte, Wiest & B6nard, 1992). Fig. 8(a) gives the 
electrostatic potential including the dipole and quad- 
rupole components of the electron density [see (3) 
and (4)]. First, this experimental electrostatic 
potential was fitted by point charges on a single shell 
corresponding to two van der Waals radii. The fit 
was not very good (R = 19%) and led to qo = -0 .89  
and qH = 0.44 e. To improve the quality of the fit, 
atomic multipole moments were included up to the 
dipole level for H atoms and to the quadrupole level 
for O atoms. The R factor fell to 0.0017 and the 
charges obtained were qo = -0 .54  and qH = 0.27 e; 
the potential map (Fig. 8b) is almost identical to the 
experimental one. The introduction of these multipo- 
lar moments is then necessary to improve the point- 
charges fitting method. This is in very good 
agreement with the results of Stone & Price (1988), 
who showed that the atomic distributed multipoles 
are needed to calculate the molecular energy. Further 
work is in progress to apply this correction to pep- 
tide molecules. 
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Abstract 

A theory of optical rotation in a-quartz that was recently 
published by Chen [Acta Cryst. (1993), A49, 148-154] 
results in optically inactive directions perpendicular to the 
optic axis. It is pointed out here that this conclusion is not 
in accordance with either symmetry considerations or the 
observed experimental evidence. 

Recently, Chen (1993) described a theoretical treatment of 
the optical rotation in a-quartz. The procedure involved 
calculations of the polarizabilities of individual SiO4 tetra- 
hedra within a unit cell and resulted in the conclusion that, 
in addition to optically inactive directions 33.83 ° from the 
optic axis, there should also be inactive directions along the 
diad axes of quartz. My purpose in writing this note is to 
point out that this cannot be correct and indicate some of 
the errors made in the theory used. 

Now, it is well known that there are inactive directions 
at a particular azimuthal angle to the optic axis. The effect 
is caused by the fact that the rotation perpendicular to the 
optic axis is of opposite sign to that along the optic axis. 
Chen quotes Wahlstrom (1979) as giving this angle as 
33.83 ° to the optic axis, but in fact this is a misunderstand- 
ing of what Wahlstrom meant by the phrase 'plate inclined 
at 56.17 ° to the optic axis' [this angle was actually 
determined, for example, by Szivessy & Mfinster (1934); it 
was also quoted in the well known book of Nye (1987)]. 

Moreover, the idea that there are additional inactive 
directions along the diad axes of quartz would appear to 
violate crystal symmetry, since the form of the gyration 
tensor for a trigonal crystal like quartz would require the 
gyration to be the same for all directions perpendicular 
to the optic axis, including the diad axes. All measure- 
ments made perpendicular to the optic axis [for example, 
those of Szivessy & Mfinster (1934), Bruhat & Grivet 
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(1935), Konstantinova, Ivanov & Grechushnikov (1969), 
Kobayashi & Uesu (1983), Kobayashi, Uesu & Takehara 
(1983), Horinaka, Tomii, Sonomura & Miyauchi (1985), 
Moxon & Renshaw (1990) and Moxon, Renshaw & 
Tebbutt (1991)] agree in indicating that the optical rotation 
perpendicular to the optic axis has a measurable value 
opposite in sign to that along the optic axis, so it cannot be 
zero for any direction perpendicular to the optic axis. 

In addition, Chen quotes a 'prediction' of Wahlstrom 
(1979) that 'light travelling at right angles to the optic axis 
is rotated but in opposite sense to that propagated along 
the optic axis'. It is fair to point out that this is a 
misunderstanding of language, in that Wahlstrom makes 
no such prediction but correctly reports this as 
a fact, presumably on the basis of his knowledge of the 
well known experimental evidence already published. 
Wahlstrom's book, excellent though it is, is a student 
textbook on optical crystallography in general and is not, 
therefore, a primary reference for work on optical rotation. 
There is, in fact, a vast amount of literature, going back to 
the last century, in which the many theories of optical 
rotation in crystals are described [for a general discussion, 
see, for instance, Glazer & Stadnicka (1986) and Devarajan 
& Glazer (1986)]. 

So what, then, is wrong with Chen's calculation? I 
believe that the answer to this question lies in the oversim- 
plification of the theory used. For instance, the calculation 
is made by combining together the polarizability effects of 
a few tetrahedra within a unit cell. This treatment, how- 
ever, ignores the fact that the tetrahedra exist within a 
crystal, i.e. an infinitely extending structure. By restricting 
the calculation to a few tetrahedra within a unit cell, the 
author ignores the combined contributions of all the other 
atoms in the crystal. In any proper treatment of optical 
rotation in crystals, it is necessary to sum the effective 
electric fields throughout the whole crystal, for example via 
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